WEGENER ‘S GRANULOMATOSIS

Respiratory and Critical care Division
Department of Pediatrics, Siriraj Hospital.
WEGENER’S GRANULOMATOSIS

- A rare primary systemic vasculitis (PSV) of childhood.
- Necrotizing granulomatous inflammation of small to medium vessels.
- Typically affecting the upper and lower respiratory tract and the kidneys.
- Incidence 0.03-3.2 per 100,000 children per year.

Arthritis & Rheumatism 2009; 60(11): 3413-24
Definition and classification criteria of WG

<table>
<thead>
<tr>
<th>ACR 1990 criteria (2/4)</th>
<th>EULAR/PRESS criteria (3/6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Nasal or oral inflammation</td>
<td>- Nasal or sinus inflammation</td>
</tr>
<tr>
<td>- Abnormal chest radiograph (nodules, fixed infiltrates or cavities)</td>
<td>- Abnormal chest radiograph or chest CT scan</td>
</tr>
<tr>
<td>- Abnormal urinary sediment (microhematuria or red cell cast)</td>
<td>- Abnormal urinalysis (hematuria and/or significant proteinuria)</td>
</tr>
<tr>
<td>- Granulomatous inflammation on biopsy</td>
<td>- Granulomatous inflammation on biopsy/necrotizing pauci-immune GN</td>
</tr>
<tr>
<td></td>
<td>- Subglottic, tracheal, or endobronchial stenosis</td>
</tr>
<tr>
<td></td>
<td>- Anti-PR3 ANCA or c-ANCA staining</td>
</tr>
</tbody>
</table>

Source: Arthritis & Rheumatism, Vol. 6, No.11, Nov 2009, p 3413-3424 (American College of Rheumatology 2009)
Clinical subgroup of WG according to the definitions of the EUVAS

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Organ involvement</th>
<th>Constitutional Symptoms</th>
<th>Presence of ANCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localized</td>
<td>Upper and/or lower respiratory tract</td>
<td>No</td>
<td>+/-</td>
</tr>
<tr>
<td>Early systemic</td>
<td>Any except renal or imminent organ failure</td>
<td>Yes</td>
<td>Usually +</td>
</tr>
<tr>
<td>Generalized</td>
<td>Renal with serum creatinine (\leq 500 \mu\text{mol/l}) and/or other imminent organ failure</td>
<td>Yes</td>
<td>+</td>
</tr>
<tr>
<td>Severe renal</td>
<td>Renal with serum creatinine (> 500 \mu\text{mol/l})</td>
<td>Yes</td>
<td>+</td>
</tr>
<tr>
<td>Refactory</td>
<td>Progressive disease despite therapy with corticosteroids and cyclophosphamide</td>
<td>Yes</td>
<td>+/-</td>
</tr>
</tbody>
</table>

EUVAS = The European Vasculitis Study Group
Pathophysiology: granulomatous lesion
- WG starts as granulomatous disease in the respiratory tract and systemic vasculitis develops subsequently.
 - early foci of fibrinoid necrosis could be a consequence of PR3-ANCA-induced necrotizing capillaritis.
 - the granulomatous lesion are built up by CD4⁺ T-cells, CD8⁺ T-cells, histiocytes, CD20⁺ B-lymphocytes, neutrophil granulocytes, CD68⁺ macrophages and CD68⁺ multinucreated giant cells surrounding a central necrosis
Pathophysiology: granulomatous lesion
- the central necrosis show an irregular serpiginous pattern coined “geographic necrosis”
- a palisade of epitheloid histiocytes may arrange around the necrotic foci
- the center of the necrosis is acellular or contains PMN leukocytes.
Pathophysiology: **vasculitis**
- the necrotizing vasculitis predominantly affects small vessels and medium-sized vessels
- endothelial cells are the target of the initial injury (swelling, necrosis and deadherence)

In the lung:
- capillaries, venules and arterioles are infiltrated by PMN
- pulmonary microvascular necrotizing capillaritis is the cause of pulmonary hemorrhage
WEGENER’S GRANULOMATOSIS

- Pathophysiology: **vasculitis**
 - **In the kidney**: rupture of the basement membrane subsequent to neutrophil degranulation rise to glomerular capillary thrombosis followed by a cascade of focal segmental crescentic glomerulonephritis
 - the vasculitis is call “pauci-immune” because of few or no immunoglobulin and/or complement deposits are detected.
 - **The skin**: cutaneous vascular immune complex deposits
Pathophysiology: **PR3-ANCA**
- PR3 is the principal target antigen of ANCA
- the detection of PR3-ANCA is highly specific for WG
- interaction of PR3-ANCA with PR3 released from azurophilic granula results in premature degranulation of neutrophil granulocytes, subsequent endothelial cell damage and leukocyte recruitment
Clinical features

The most common signs and symptoms at diagnosis
- sinusitis 61%
- lung disease 22-45%
- arthritis/arthalgias 30%
- fever 22 %
- eye disease 13%
- rash 9%
- glomerulonephritis 6%

heterogeneity of organ involvement, mainly affecting the upper airways, lungs and kidneys
Clinical features: upper respiratory tract
- nasal obstruction
- bloody nasal discharge or frank epistaxis
- crusting or mucosal ulcerations
- hoarseness
- chronic sinusitis
- otitis media and mastoiditis
- hearing loss
- saddle nose deformity, septum perforation and inspiratory stridor due to subglottic stenosis are symptoms during later disease stages
WEGENER’S GRANULOMATOSIS

- Clinical features: **lower respiratory tract**
 - ulcerating tracheobronchitis
 - bronchus stenoses subsequent to granulomatous inflammation
 - cavitation of lung nodules
 - asymptomatic, persistent cough, dyspnea, hemoptysis, respiratory failure

- **Common CXR findings**
 - fleeting or persistent densities (67%)
 - nodules (58%)
 - focal atelectasis, pleural effusion, pulmonary hemorrhage, mediastinal or hilar node enlargement are less frequent
- a : nasal deformity (saddle nose)

- b : x-ray film of the neck showing subglottic stenosis

- c : MRI of the neck showing subglottic stenosis

- d : pulmonary involvement
WEGENER’S GRANULOMATOSIS

- Clinical features: **renal involvement**
 - necrotizing glomerulonephritis
 - asymptomatic microhematuria
 - RPGN
 - renal failure with oliguria
 - renal hypertension
- histopathology
 - diffuse extracapillary necrotizing (pauci-immune) glomerulonephritis with necrotizing arteriolitis
Clinical features: **ocular manifestations**
- scleritis
- conjunctivitis
- uveitis
- optic neuritis
- retro-orbital pseudotumor
Clinical features: skin involvement
- skin rash
- erythematous or pruritic macules
- massive nodules
- necrotizing vasculitic ulcerations and gangrene
Clinical features: other manifestations
- joint involvement: arthralgia of the knees, hips, wrists or ankles
- constitutional symptoms: malaise, fever, night sweat and weight loss
- full-blown generalized WG is the pulmonary-renal syndrome
Based on the typical organ involvement confirmed by the histopathological demonstration of vasculitis, granulomatous inflammation and necrosis.

- The vasculitis usually involves small arteries and veins.
- The granulomas may be discrete or confluent with irregular patterns.
ANCA

- a cytoplasmic pattern of ANCA (c-ANCA) was detected in 70-90% of patients with active WG.
- its target antigen was to be PR3
- c-Antineutrophilic cytoplasmic antibodies (c-ANCA) or antibodies to proteinase-3 are highly specific for WG (90-97%).
Diagnosis

- **Biopsy**
 - should be taken to confirm the diagnosis of vasculitis.
 - cutaneous, nasal, transbronchial and renal biopsy
 - **lung biopsy**: the combination of granulomas and vasculitis as well as vasculitis, necrosis and granulomatous inflammation.
 - **renal biopsy**: segmental necrotizing glomerulonephritis, usual focal.
DIAGNOSIS

- **Serologic parameters**
 - elevated ESR, CRP
 - CBC : mild leukocytosis, thrombocytosis, normochromic anemia
 - normo or hypercomplementemtic
 - the soluble IL-2 receptor (sIL-2R) which is shed from lymphocytes activation, use for monitoring disease activity and indicate relapse.
 - UA : a nephritic sediment with dysmorphic erythrocyturia and protienuria indicates renal involvement.
Technical procedures
- CXR: assessment of lung infiltrate and pleural effusion.
 - HRCT: assess pulmonary involvement.
 - BAL: suggestive of alveolitis or pulmonary hemorrhage, helpful in excluding opportunistic infections.
- Abdominal U/S: assess kidney size and renal parenchyma.
- MRI: assessment sinusitis, mastoiditis, orbital granuloma, cerebral vasculitis.
- Echocardiography: assess cardiac involvement.
1. Remission induction therapy

“Standard of care”
- cyclophosphamide 2 mg/kg/day for 1 year post-remission then reduced by 25 mg every 2-3 months.
+ prednisolone 1 mg/kg/day for 1 month, reducing to 10-20 mg/day by 12 weeks.
- to reduce long-term risk of cyclophosphamide, intravenous pulse protocol should be used.
- more relapse in the pulse cyclophosphamide group.
“alternative care, the EUVAS study”
- methotrexate and prednisolone for induction of remission in non-life-threatening, non-renal “early systemic WG”
TREATMENT

- **2. Remission maintenance therapy**
 - continuing oral cyclophosphamide.
 - substitute methotrexate or azathiopine after 3-6 months of cyclophosphamide.
 - persistent ANCA positivity after induction therapy is associated with almost 80% relapse rate at 4 years.
Therapy and selected clinical parameters of patients followed for > 6 months (pediatric WG at SickKids 1984-2005, n = 20)

<table>
<thead>
<tr>
<th>Therapeutic Regimen</th>
<th>No.</th>
<th>Median F/U (mo.)</th>
<th>Median no. flares (range)</th>
<th>Median time to first flare (mo.)</th>
<th>Median time to first additional agent (mo.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroid only</td>
<td>3</td>
<td>32.7</td>
<td>3.0(0-4)</td>
<td>6.6</td>
<td>25.6</td>
</tr>
<tr>
<td>Steroid + poCYC</td>
<td>4</td>
<td>44.3</td>
<td>2.0(0-10)</td>
<td>10.1</td>
<td>18.1</td>
</tr>
<tr>
<td>Steroid + ivCYC</td>
<td>2</td>
<td>29.1</td>
<td>2.5(2-3)</td>
<td>18.6</td>
<td>19.5</td>
</tr>
<tr>
<td>Steroid + ivCYC switched to AZA (n=3) or MTX (n=4)</td>
<td>7</td>
<td>28.8</td>
<td>1.0(0-3)</td>
<td>7.9</td>
<td>12.6</td>
</tr>
<tr>
<td>Steroid + MTX (n=2) / AZA (n=2)</td>
<td>4</td>
<td>48.6</td>
<td>2.5(2-4)</td>
<td>17.7</td>
<td>25.5</td>
</tr>
</tbody>
</table>
RCT for ANCA-associated vasculitis (AAV)

<table>
<thead>
<tr>
<th>RCT</th>
<th>CYCAZAREM</th>
<th>WGET</th>
<th>NORAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Aims</td>
<td>Maintenance of remission CYC vs AZA</td>
<td>Maintenance of remission Etanercept vs placebo</td>
<td>Induction of remission CYC vs MTX</td>
</tr>
<tr>
<td>- Patients</td>
<td>Generalized AAV (n=155) WG=95, MPA=60</td>
<td>WG=180 (generalized:128, localized:52)</td>
<td>Early non-renal mild AAV WG=89, MPA=6</td>
</tr>
<tr>
<td>- Results</td>
<td>93%</td>
<td>Eta 91%, pla 92% (NS)</td>
<td>NS</td>
</tr>
<tr>
<td>rates of induction of remission</td>
<td>AZA 16%, CYC 14% (NS) WG 18%, MPA 8% (p=0.03)</td>
<td>NS</td>
<td>MTX 90%, CYC 94% (NS)</td>
</tr>
<tr>
<td>rates of relapse</td>
<td>NS</td>
<td>Malignancy Eta:6, pla:0</td>
<td>MTX 70%, CYC 47% (p=0.02)</td>
</tr>
<tr>
<td>severe adverse effect</td>
<td>8</td>
<td>6</td>
<td>NS</td>
</tr>
<tr>
<td>death</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
3. prophylactic treatment
- trimethoprim-sulfamethoxazole reduces respiratory and non-respiratory tract infection.
- nasal mucipirocin ointment may be helpful to eliminate nasal carriage of *Staphylococcus aureus*.
4. Treatment of refractory disease
- TNF-α blocking agents
 : monoclonal anti- TNF-α antibody (infliximab)
 : human soluble p75 TNF-α receptor fusion protein (etanercept) .
- anti-B-cell therapy with anti-CD20 antibody (rituximab)
- IVIG (total dose 2g/kg)
- T-cell depletion with anti-thymocyte globulin (ATG)
4. Treatment of refractory disease
- plasmapheresis and immunoabsorption have been applied as adjunctive therapy in severe cases with kidney involvement
- currently recommended indications are concurrent anti-GBM, pulmonary hemorrhage and requiring dialysis during the acute phase.

Allergology International.2007;56:87-96
The Birmingham Vasculitis Activity Score (BVAS/WG)

PR3-ANCA
- PR3 is the principal target antigen of ANCA
- the detection of PR3-ANCA is highly specific for WG
- positive c-ANCA and PR3-ANCA titres during follow up identify patients at increased risk of relapse.

Antimyeloperoxidase antibodies (Anti-MPO)
- useful marker of disease activity and a good predictor of relapse in anti-MPO-associated vasculitides (MPA, WG, CSS)

Inflammatory biological variables
- CRP
- ESR

Ann Rheum Dis 2009;68;p 1564-1571
Disease remission and relapse

- more than 80% of patient with WG now survive for longer than 5 years.
- relapse was associated with less intensive initial treatment, lower cyclophosphamide doses and shorter duration of prednisolone with dose > 20 mg/day.
- the clinical individual relevance of rising ANCA titers remain unclear.
Disease-related morbidity and mortality

- permanent morbidity was significantly different from adult: nasal deformity (48% vs 25%)
 subglottic stenosis (35% vs 9%)
- chronic renal failure as a major point of long-term morbidity.
- significant prognostic factors for mortality were age and serum creatinine level at time of referral.