
Weaning and extubation in PICU An evidence-based approach

Suchada Sritippayawan, MD. Div. Pulmonology & Crit Care Dept. Pediatrics Faculty of Medicine Chulalongkorn University Kanokporn Udomittipong, MD. Div. Pulmonology & Crit Care Dept. Pediatrics Faculty of Medicine Siriraj Hospital, Mahidol University

Weaning: Why??

Benefits of reduced ventilation times

- $\checkmark \downarrow$ risk of VAP
- $\checkmark\downarrow$ PICU stay and costs
- $\checkmark \downarrow$ patient and family stress level
- ✓ Earlier return to normal daily life

Weaning: When??

Recommendation in adult (Evidence grade B)

- ✓ Some reversal of the underlying cause of respiratory failure
- \checkmark Adequate oxygenation and pH
- ✓ Stable hemodynamic
- ✓ Able to initiate an inspiratory effort

Weaning: When??

Adequate oxygenation

 $\checkmark PaO_2/FiO_2 > 150-200$

(PEEP \leq 5-8 cmH₂O, FiO₂ \leq 0.4-0.5)

Adequate pH: \geq 7.25

Weaning: When??

Other criteria

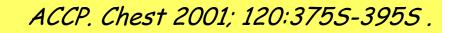
- ✓ Afebrile
- \checkmark Hb \ge 8-10 gm/dL
- ✓ arousable, GCS \ge 13, no continuous sedative infusions)
- ✓ Stable metabolic status
- ✓ Adequate cough

Weaning: How??

- Protocol-directed vs. physician-directed?
- Mode of weaning?

Weaning: How??

Protocol-directed vs. physician-directed?


Recommendation in adult (Evidence grade A)

Weaning/discontinuation protocol that are designed for nonphysician health-care professionals should be developed and implemented by ICU.

Protocol vs. nonprotocol - directed

Study in adults

- \downarrow ventilator weaning time
- \downarrow ICU cost

Protocol vs. nonprotocol - directed

Study in pediatric population: inconsistency

- \downarrow ventilator weaning time
- No change in overall ventilator duration

Respir Care 2001:772-82.

J Intensive Care Med 2004:274-84.

• No difference between protocol vs.

nonprotocol-directed

Intensive care Crit Nurse 2003; 186-97.

JAMA 2002: 2561-8.

Discrepancy of study results

 $\textbf{Adult} \neq \textbf{infants \& children}$

- Lung physiology
- Causes of ALI
- Baseline lung function
- Weaning time

Weaning protocol

- ✓ Cannot replace clinical judgment
- ✓ Should be customized to local practice and patient populations
- ✓ Require adequate staffing

- Spontaneous breathing via t-tube, CPAP, PS
- IMV
- SIMV
- SIMV with PS
- Pressure support
- Volume support
- Non invasive PPV

Recommendation in pediatrics

Currently there are no generally accepted weaning protocols and techniques for children.

- Spontaneous breathing via t-tube, CPAP, PS
- IMV
- SIMV
- SIMV with PS
- Pressure support
- Volume support
- Non invasive PPV

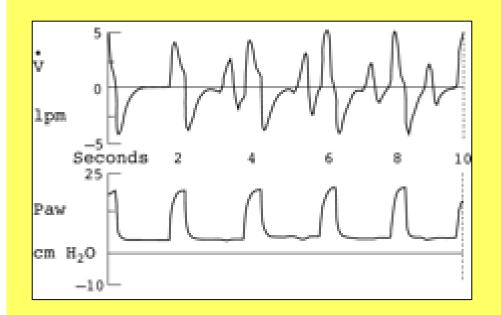
Spontaneous breathing trial

Criteria used to define tolerance of SBT

✓ Acceptable gas exchange

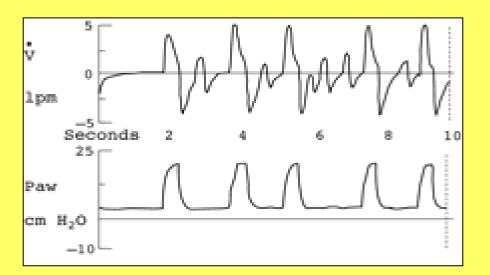
- SpO₂ \ge 85-90%
- $PaO_2 \ge 50-60 \text{ mmHg}$

- \uparrow PaCO₂ \leq 10 mmHg
- ✓ Stable hemodynamic
- \checkmark Stable ventilatory pattern

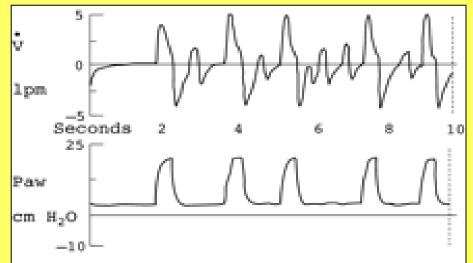

Spontaneous breathing trial

Criteria used to define tolerance of SBT

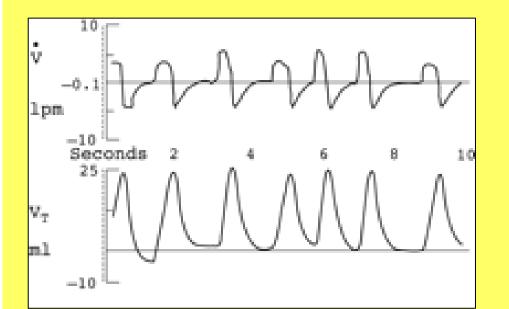
- \checkmark No change in mental status
- \checkmark No signs of \uparrow WOB
- \checkmark No sign of patient discomfort


ACCP. Chest 2001; 120:3755-3955 .

- Spontaneous breathing via t-tube, CPAP, PS
- IMV
- SIMV
- SIMV with PS
- Pressure support
- Volume support
- Non invasive PPV



Patient-ventilator dyssynchrony



- ↑ WOB during spontaneous
 breathing unless appropriate
 triggering system

↓ patient-ventilator dyssynchrony
 ↑ WOB during spontaneous
 breathing unless appropriate
 triggering system

SIMV+PS

- VOB during spontaneous
 breathing with adequate PS
- $\cdot \downarrow$ duration of ventilator time

SIMV

- Initial SMV rate: half of the controlled ventilation
- Gradually \downarrow SIMV rate (2-4 breaths/min) according to the patient

```
\downarrow SIMV rate
```

```
Infant - wean to 2-4 breaths/min
```

Older child - wean to CPAP mode

Rogers MC. Textbook of Pediatric Intensive Care

- Flow cycled, pressure limited
- Decelerating flow
- TV, IT, RR are determined by the patient
- Expiration occurs when
 - inspiratory flow <25% of initial flow or
 - time >80% of respiratory cycle
- Need spontaneous inspiration
- No back up for apnea

- Inspiratory pressure boost during spontaneous breathing
- Overcome WOB created by ETT

and ventilator circuit

Minimal PS adjusted for ETT size ETT size 3.0-3.5 PS = 10 ETT size 4.0-4.5 PS = 8 ETT size ≥ 5.0 PS = 6

JAMA 2002; 2561-8.

- Initial PS level clinically determined (patient breathes comfortably)
- Adjust PS to achieve exhaled TV = 5-7 ml/kg
- \downarrow PS 2 cmH₂O q 4 hrs or earlier if exhaled TV > 7 ml/kg or \uparrow PS 2 cmH₂O if TV < 5 ml/kg
- Monitor exhaled TV, RR and SpO₂

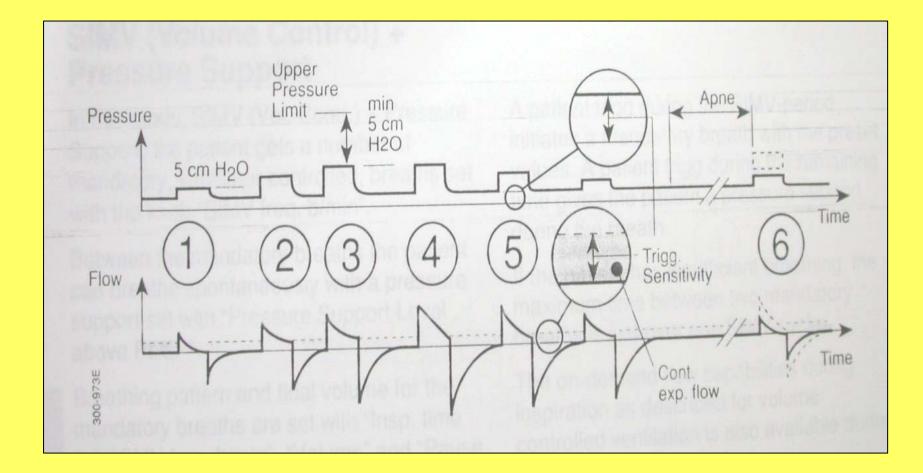
Consider extubation if

Adequate exhaled TV and SpO2 with acceptable

RR for at least 2 hrs at

- $FiO_2 \leq 0.5$ and $PEEP \leq 5 \ cmH_2O$

- Minimal PS adjusted for ETT size


Acceptable range of RR for age

- < 6 mo. 20-60/min
- 6 mo.-2 yrs 15-45/min
- 2-5 yrs 15-40/min
- > 5 yrs 10-35/min

- Spontaneous breathing via t-tube, CPAP, PS
- IMV
- SIMV
- SIMV with PS
- Pressure support
- Volume support
- Non invasive PPV

- Pressure support volume guaranteed
- Flow cycled, pressure limited
- Decelerating flow
- IT, RR are determined by the patient
- Max. pressure = $5 \text{ cmH}_2\text{O}$ below set

"Upper pressure limit"

- Expiration occurs when
 - inspiratory flow <5% of initial flow or
 - time >80% of respiratory cycle
- Need spontaneous inspiration
- Back up with PRVC

VSV protocol

- Adjust initial set insp.TV to achieve exhaled TV of 6 ml/kg
- Set back up rate according to age
 - < 6 mo. 16/min
 - 6 mo.-2 yrs 14/min
 - 2-5 yrs 12/min
 - > 5 yrs 10/min

VSV protocol

- Monitor TV to ensure that they remain 5-7 ml/kg
- Consider extubation when PIP $\leq 20 \text{ cmH}_2O$, SpO₂ \geq 95%, acceptable RR with FiO₂ ≤ 0.5 and PEEP $\leq 5 \text{ cmH}_2O$

- Spontaneous breathing via t-tube, CPAP, PS
- IMV
- SIMV
- SIMV with PS
- Pressure support
- Volume support
- Non invasive PPV

Non invasive PPV

RCT study in adults

- \downarrow complications related to intubation, ICU stay, overall mortality
- Most were done in COPD

Chest 2001:4745-4765

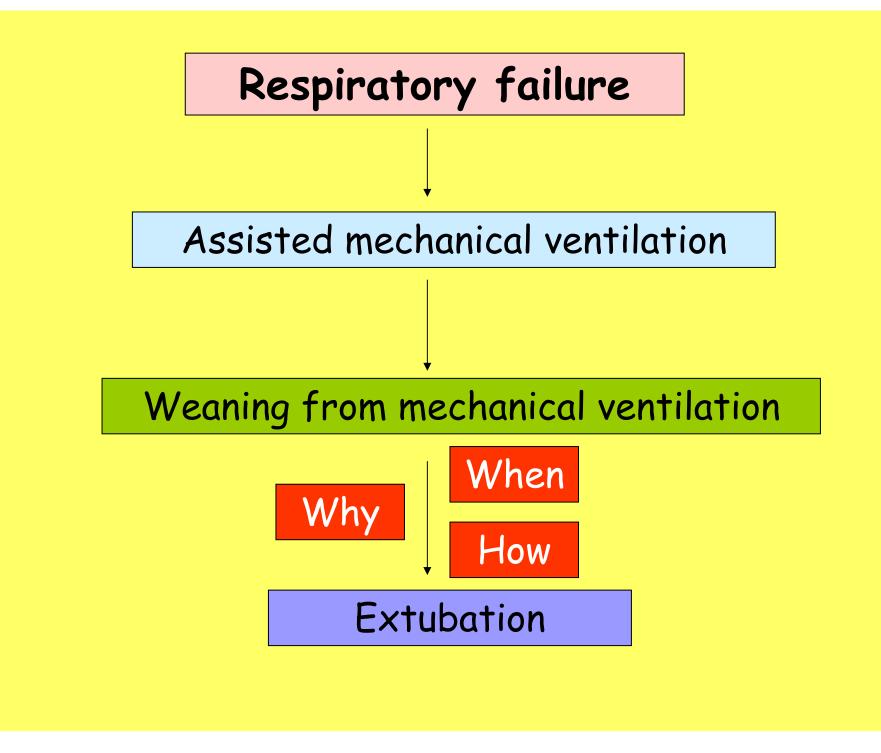
Study in pediatrics

- Scanty
- Case reports in NMD

Respir Care 2003:442-53.

Singapore Med J 2004; 232-4.

Non invasive PPV


Main reasons for failure NPPV

- Lack of co-operation
- Excessive secretion
- Severe strength-load imbalance
- Unstable hemodynamic

Minerva Anestesiol 2005:243-7

Recognition of weaning failure

- ✓ Tachypnea
- ✓ Hypoxemia
- ✓ Tachycardia
- ✓ Bradycardia
- ✓ Hypertension
- ✓ Hypotension
- \checkmark Agitation, diaphoresis, anxiety

